Low-energy ion-assisted control of interfacial structures in metallic multilayers
نویسنده
چکیده
A molecular dynamics method has been used to simulate the argon ion-assisted deposition of Cu/Co/Cu multilayers and to explore ion beam assistance strategies that can be used during or after the growth of each layer to control interfacial structures. A low-argon ion energy of 5–10 eV was found to minimize a combination of interfacial roughness and interlayer mixing (alloying) during the ion-assisted deposition of multilayers. However, complete flattening with simultaneous ion assistance could not be achieved without some mixing between the layers when a constant ion energy approach was used. It was found that multilayers with lower interfacial roughness and intermixing could be grown either by modulating the ion energy during the growth of each metal layer or by utilizing ion assistance only after the completion of each layers deposition. In these latter approaches, relatively high-energy ions could be used since the interface is buried and less susceptible to intermixing. The interlayer mixing dependence upon the thickness of the over layer has been determined as a function of ion energy. r 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Low energy ion assisted atomic assembly of metallic superlattices
Metallic superlattices with planar, unalloyed (unmixed) interfacial structures are difficult to fabricate by all conventional vapor deposition methods. Molecular dynamics simulations have been used to explore the ways in which inert gas ions can be used to control the atomic assembly of a model Cu/Co metallic super lattice system. High energy, high atomic weight ions are shown to smooth rough i...
متن کاملEffects of ion-assisted growth on the layer definition in Cr/Sc multilayers
Nano-structural evolution of layer morphology and interfacial roughness in Cr/Sc metal multilayers grown with ion assistance during magnetron sputter deposition has been investigated by high resolution transmission electron microscopy and hard X-ray reflectivity. Calculations based on a binary collision model predict an ion-assisted growth window for optimized Cr/Sc multilayer interface sharpne...
متن کاملThe low energy ion assisted control of interfacial structure: Ion incident energy effects
The properties of multilayered materials are often dependent upon their interfacial structure. For low temperature deposition processes where the structure is kinetically controlled, the interfacial roughness and the extent of interlayer mixing are primarily controlled by the adatom energy used in the deposition. Inert gas ion assistance during the growth process also enables manipulation of th...
متن کاملAtomic assembly of metal surfaces and interfaces
Inert gas ion impacts can be used to manipulate atomic assembly processes during the growth of metallic superlattices but the detailed mechanisms are not well understood. Molecular dynamics simulations are used to investigate the effects of ion incident angle and fluence upon the reassembly and structure of a copper surface partially covered with cobalt asperities. In the low ion energy regime,...
متن کاملBiased Target Ion Beam Deposition of GMR Multilayers
– Multilayers like those used in giant magnetoresistive spin-valves can be improved if better layer thickness uniformity, lower contamination levels, reduced interfacial roughness and less interlayer mixing can be achieved. Atomistic simulations have revealed that optimization of the energy of the depositing atoms and the application of very low energy inert gas ion assistance reduce both inter...
متن کامل